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Abstract. Within the framework of the instantaneous Bethe-Salpeter equation, we present a detailed analy-
sis of light meson spectra with respect to various parameterizations of confinement in Dirac space. Assuming
a linearly rising quark-antiquark potential, we investigate two different spinorial forms (Dirac structures),
namely 1

2
(1I ⊗ 1I − γ0 ⊗ γ0) as well as the UA(1)-invariant combination

1
2
(1I ⊗ 1I − γ5 ⊗ γ5 − γµ ⊗ γµ),

both providing a good description of the ground-state Regge trajectories up to highest observed angular
momenta. Whereas the first structure is slightly prefered concerning numerous meson decay properties (see
M. Koll et al. Eur. Phys. J. A 9, 73 (2000)), we find the UA(1)-invariant force to be much more appro-
priate for the description of a multitude of higher mass resonances discovered in the data of the Crystal
Barrel collaboration during the last few years. Furthermore, this confinement structure has the remarkable
feature to yield a linear dependence of masses on their radial excitation number. For many experimental
resonances such a trajectory-like behaviour was observed by Anisovich et al. We can confirm that almost
the same slope occurs for all trajectories. Adding the UA(1)-breaking instanton induced ’t Hooft interaction
we can compute the pseudoscalar mass splittings with both Dirac structures and for the scalar mesons a
natural mechanism of flavour mixing is achieved. In the scalar sector, the two models provide completely
different ground-state and excitation masses, thus leading to different assignments of possible q̄q states in
this region. The scalar meson masses calculated with the structure 1

2
(1I ⊗ 1I − γ5 ⊗ γ5 − γµ ⊗ γµ) are in

excellent agreement with the K-matrix poles deduced from experiment by Anisovich and coworkers.

PACS. 11.10.St Bound states and Bethe-Salpeter equations – 11.30.Rd Chiral symmetries – 12.39.Ki
Relativistic quark model – 12.40.Yx Hadron mass models and calculations

1 Introduction

In the last few years, evaluations of the Crystal Barrel
p̄N -annihilation data set provided a lot of new meson res-
onances in the mass region 1000–2400 MeV [1,2,4–8]. The
experiment was performed with the Crysta Barrel detec-
tor at LEAR where antiproton-proton annihilation into
π0ηη, π0π0η, 3π0, 4π0, π0η and π0η′ has been studied up
to an incident beam momentum of 1.94 GeV/c.

From a theoretical point of view, higher excitation res-
onances in the meson mass spectrum are of great inter-
est because they reflect the underlying confinement struc-
ture at the quark level. However, from first QCD prin-
ciples especially the spinorial Dirac structure of the con-
finement is largely unknown. Therefore a phenomenolog-
ical study of different Dirac structures in a fully rela-
tivistic framework seems worthwhile. From earlier works
[9,10] it is known that a linearly rising confinement po-
tential with a Dirac structure of the form 1I⊗ 1I− γ0 ⊗ γ0

provides a very good description of the Regge trajecto-
ries up to total angular momentum J = 6. However,
the suitability of a confinement parameterization should
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not only be linked to the bulk of experimental ground-
state masses in each channel but also to their corre-
sponding radial excitations. For that, a multitude of well-
established higher resonances has to be known. Unfortu-
nately this is not the case so far, although especially dur-
ing the last two years the situation has improved. For in-
stance, while the Particle Data Group 98 (PDG 98 [11])
did not list any radial excitations for the isovector states
a1(11++), a2(12++), a4(14++) and b1(11+−), in their lat-
est issue (PDG 00 [46]) they state three new such reso-
nances: the vector meson a1(1640) observed by the au-
thors in [2] (a similar resonance, the a1(1700), is stated in
[3]), and two tensor mesons, the a2(1660) [5,6] and the
a2(1750) [47,48]. Furthermore a lot of resonances have
been found in the last few years, which do not appear in
the latest PDG-listing. For example: a0(2025) [1], a1(2100)
[4], a1(2340) [4], a2(2100) [4], a4(2260) [4], η2(2040) [7],
η2(2300) [7], f1(1700) [7], f1(2340) [7], f4(2320) [7]. We
compare these new experimental resonance positions with
the eigenvalue spectrum calculated with the Dirac struc-
ture 1I ⊗ 1I − γ0 ⊗ γ0 (model A), on the one hand, and
the structure 1I ⊗ 1I − γ5 ⊗ γ5 − γµ ⊗ γµ (model B), on
the other hand. Whereas the first structure produces ex-
citation masses which overestimate the corresponding ex-
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perimental masses up to 400 MeV, the second structure
yields a remarkably good agreement with the newly ob-
served resonances. Here, deviations are in general less than
100 MeV. Furthermore, in model B the squared masses of
the resonances show, in contrast to model A, a linear de-
pendence on their radial excitation number,M2 ∝ n, very
similar to the behaviour of many experimental resonances
recently observed by A. V. Anisovich, V. V. Anisovich and
A. V. Sarantsev [8].

It turned out that the comparatively strong coupling of
positive and negative energy components of the Salpeter
amplitudes in model B is responsible for this desired low-
ering of the excited meson masses. We will illustrate this
effect by carrying out the nonrelativistic reduction of the
full Salpeter equation for both models. Whereas even in
this limit the above-mentioned coupling does not vanish
for model B, this reduction provides the usual Schrödinger
equation for model A, i.e. the complete decoupling of pos-
itive and negative energy components. Indeed, model A
reduces in this limit to a particular version of the nonrela-
tivistic quark model (NRQM) that provides a satisfactory
description of both meson and baryon ground-state masses
[14]. Of course, due to the absence of the negative-energy
components, the NRQM in [14] fails for higher resonances
as does the often cited model of Godfrey and Isgur [15].

The relativistic Salpeter framework presented here
contains a priori all small desired spin-orbit terms in or-
der to describe the small mass splittings between states
that can be attributed to the same orbital angular mo-
mentum multiplets. Examples are a1(1260) and a2(1320),
f1(1285) and f2(1270) and K2(1770) and K∗

3 (1780). One
should emphasize that the low positions of the a0(980) and
f0(980) cannot be explained by these intrinsic spin-orbit
terms alone. In order to describe these splittings an addi-
tional residual interaction has to be adopted. We will use
an instanton induced effective quark interaction discov-
ered by ’t Hooft [16], which also accounts for the correct
vector-pseudoscalar andK-π-η-η′ mass splitting. Whereas
in the nonrelativistic model [14] this interaction only acts
for pseudoscalar mesons, in the fully relativistic Salpeter
model [17,18] it also acts in the scalar sector and pro-
vides a possible interpretation of the still unknown scalar
ground-state nonet [19]. However, as we will see this in-
terpretation strongly depends on details of the confine-
ment force, in particular on whether the used Dirac struc-
ture induces additional spin-orbit forces or not. In fact,
as the Dirac structure 1I ⊗ 1I − γ5 ⊗ γ5 − γµ ⊗ γµ gener-
ates such additional spin-orbit terms, model B provides a
completely different result for the scalar mass spectrum
compared to the earlier computations in model A which
produced an almost flavour singlet f0-state at approxi-
mately 1 GeV and the flavour octet states f0, K∗

0 , a0 in a
mass region around 1.4 GeV (see [19]): In model B, the cal-
culated scalar ground-state masses (and also their radial
excitations) are roughly 200–300 MeV lighter. Moreover,
they show a remarkable agreement with a lot of K-matrix
poles deduced by V. V. Anisovich and coworkers [22–24,
42–44] from experiment.

This paper is organized as follows: In section 2 we
briefly comment on the Bethe-Salpeter equation for a
quark-antiquark bound state and display the approxima-
tions (instantaneous approximation, free quark propaga-
tors) that lead to the Salpeter equation, which constitutes
the basic equation of our model. Section 3 is devoted to
an extensive discussion of the effects of the model interac-
tions adopted on the description of the experimental mass
spectrum: In 3.1, focusing on the confinement force alone,
we compare the resulting bound state masses of model
A and model B to the complete J > 0 mass spectrum
and especially to the recently observed higher resonances
quoted above. The nonrelativistic reduction of both mod-
els is presented in 3.2, where we also define the positive
and negative energy components of the Salpeter ampli-
tude. A brief discussion concerning spin-orbit effects in
both models is given in 3.3. In the last part, section 3.4, we
focus on the pseudoscalar and scalar mesons by adding the
residual ’t Hooft interaction which only acts for mesons
with vanishing total angular momentum. There we will
also comment on a set of K-matrix poles found by V. V.
Anisovich and coworkers [22–24,42–44] by comparing to
our results. Finally we give a summary and conclusion in
section 4.

2 A covariant quark model in the
instantaneous Bethe-Salpeter approach

In quantum field theory a quark-antiquark bound state
with four-momentum P and mass M , M2 = P 2, is
described by the Bethe-Salpeter (BS) equation for two
fermions [12]. In momentum space, this equation reads

χP(p)=SF
1 (
P

2
+ p)

×
∫

d4p′

(2π)4
[−iK(P, p, p′)χP(p′)

]
SF

2 (−
P

2
+p), (1)

where p is the relative four-momentum between the quark
and the antiquark, K denotes the infinite sum of their
irreducible interactions and the corresponding full Feyn-
man propagators are labeled by SF

1 and SF
2 , respectively.

The BS amplitude χP is defined in coordinate space as the
time-ordered product of the quark and the antiquark field
operator between the bound state |P 〉 and the vacuum:

χP
αβ(x1, x2) :=

〈
0

∣∣T ψ1
α(x1)ψ̄2

β(x2)
∣∣ P 〉

=

e−iP ·(x1+x2)/2

∫
d4p

(2π)4
e−ip·(x1−x2)χP

αβ(p), (2)

where α and β are multi-indices for the Dirac, flavour and
colour degrees of freedom.

Since in general the interaction kernel K and the full
quark propagators SF are unknown quantities we make
two (formally covariant) approximations:
– The propagators are assumed to be of the free form
SF

i = i( 	 p − mi + iε )−1 with effective constituent
quark masses mi that we use as free parameters in our
model.
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– It is assumed that the interaction kernel only depends
on the components of p and p′ perpendicular to P , i.e.
K(P, p, p′) = V (p⊥P , p

′
⊥P ) with p⊥P := p−(p·P/P 2)P

(instantaneous approximation).

Integrating in the bound state rest frame over the
time component p0 and introducing the equal-time (or
Salpeter) amplitude

Φ(p) :=
∫

dp0

2π
χP (p0,p)

∣∣
P=(M,0)

=
∫

dp‖P

2π
χP (p‖P , p⊥P )

∣∣
P=(M,0)

, (3)

we end up with the Salpeter equation [13], which consti-
tutes the basic equation of our model:

Φ(p) = + Λ−
1 (p)γ

0

[∫
d3p′

(2π)3
V (p,p ′)Φ(p ′)
M + ω1 + ω2

]
γ0Λ+

2 (−p)

− Λ+
1 (p)γ

0

[∫
d3p′

(2π)3
V (p,p ′)Φ(p ′)
M − ω1 − ω2

]
γ0Λ−

2 (−p) .

(4)

Here Λ±
i (p) = (ωi ± γ0("γp +mi))/2ωi are projectors on

positive and negative energy solutions of the Dirac equa-
tion and ωi =

√
p2 +m2

i denotes the kinetic energy of the
quarks.

The simultaneous calculation of the meson masses M
and the Salpeter amplitudes Φ results by solving the cor-
responding eigenvalue problem of eq. (4) with an adequate
potential ansatz (see [18] for details).

3 Model interactions and meson mass spectra

The global structure of the experimental mass spectrum
reflects a linearly rising confinement force which not only
produces the Regge trajectories M2 ∝ J but also the en-
ergy mass gaps between the radial excitation states. Fur-
thermore, the confinement force should be flavour sym-
metric because one finds for every isovector state an en-
ergetically degenerate isoscalar partner in the experimen-
tal mass spectrum. The best known example is of course
ρ(770) and ω(782), but also h1(1170) and b1(1235) and
many other pairs, up to a6(2450) and f6(2510). The pseu-
doscalar mesons π, η, η′ exhibit a mass splitting which is
of course not compatible with this rule; therefore one has
to introduce a flavour-dependent residual interaction in
order to get an appropriate description for these mesons.
We will use the instanton induced effective quark inter-
action discovered by ’t Hooft [16] which in the present
formulation acts for mesons with vanishing total angular
momentum (J = 0) only. In section 3.1, we will focus
on the confinement force alone and compare the resulting
bound-state masses of model A and model B to the corre-
sponding experimental resonances with J > 0. Presenting
the nonrelativistic reduction of both models in section 3.2
and discussing spin-orbit effects in section 3.3, the residual
’t Hooft interaction will be added in section 3.4 in order
to cover the pseudoscalar and scalar mesons.

3.1 Confinement potential and mesons with J > 0

In this subsection, we will discuss two different versions
for the confinement force. These two models differ by their
Dirac structures Γ ⊗ Γ , whereas the coordinate space de-
pendence is chosen to be linear in both parameterizations:

∫
d3p′

(2π)3
VC(p,p ′)Φ(p ′) =

∫
d3p′

(2π)3
VC((p − p ′)2)ΓΦ(p ′)Γ . (5)

Here VC((p−p ′)2) is the Fourier transform of the linearly
rising potential V(|xq−xq̄|) = ac+bc·|xq−xq̄|; the confine-
ment offset ac and its slope bc are free parameters of our
model. So, for given Dirac structure and constituent quark
masses in a physically reasonable range (mn ≈ 300–400
MeV, ms ≈ 500–600 MeV) the calculation of the com-
plete J > 0 mass spectrum only depends on these two
parameters. In order to fix them, we perform a fit to the
experimental Regge trajectories and, after some fine tun-
ing of the quark masses, we end up with the parameters
of model A and model B shown in table 1.1.

3.1.1 Dirac structure Γ ⊗ Γ = 1
2 (1I⊗ 1I− γ0 ⊗ γ0)

(Model A)

This combination of a scalar and a timelike vector Dirac
structure has already been used in earlier works [9,10,19]
where a very good description of the Regge trajectories
M2 ∝ J was achieved. The complete (J > 0) spectrum
up to J = 6 with all its radial excitations up to 2.5 GeV
is shown in figs. 1–3 where none of the new experimen-
tal resonances mentioned in the introduction were used
in the fit but only the masses listed by the Particle Data
Group [46]. Consequently a quantitative statement con-
cerning the quality of the higher excitation calculations is
not possible on the basis of these data alone. Especially,
the higher radial excitations of the isovector states b1, a1

or of their isoscalar partners h1, f1 are not contained in
[46]. Fortunately, the situation has changed illustrated by
the data shown in table 2 and table 3. Here we have listed
several new resonances which all have been found during
the last few years by various groups and collaborations
[1–7].

A comparison of the newly observed resonances with
our calculations shows that the Dirac structure 1I⊗1I−γ0⊗
γ0 (model A) produces masses that are roughly 150–350
MeV too high compared to the experimental values. The
relativized quark model of Godfrey and Isgur [15] provides
a similar tendency although their deviations are smaller.
However, this does not exclude a quarkonium interpre-
tation of these states around 1700 MeV and 2100 MeV.
Starting with the a1(1640) [2] or a1(1700) [3] as the well-
established 2P nn̄ state, a q̄q classification is much more

1 The parameters of the ’t Hooft interaction are fixed in the
pseudoscalar sector and will be discussed in 3.4.



224 The European Physical Journal A

M
as

s 
[M

eV
]

500

1000

1500

2000

2500

ω/φ h1 f1 f2 η2 ω3/φ3 f4 f6

1−− 1+− 1++ 2++ 2−+ 3−− 4++ 6++Jπc

Fig. 1. Isoscalar meson spectrum (J > 0). In the middle of each column the experimental resonance positions [47] and their
errors are indicated by lines and shaded areas; the lines in the left and right part of each column represent the calculated masses
in model A and in model B, respectively.
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Fig. 2. Isovector meson spectrum (J > 0). In the middle of each column the experimental resonance positions [46] and their
errors are indicated by lines and shadowed areas; the lines in the left and right part of each column represent the calculated
masses in model A and model B, respectively.
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Table 1. The parameters of the confinement force, the ’t Hooft interaction and the constituent quark masses in the models A
and B.

Parameter Model A Model B

g [GeV−2] 1.73 1.62’t Hooft
g′ [GeV−2] 1.54 1.35interaction
ΛIII [fm] 0.30 0.42

Constituent mn [MeV] 306 380
quark masses ms [MeV] 503 550

Confinement ac [MeV] –1751 –1135
parameters bc [MeV/fm] 2076 1300

Spin structure Γ ⊗ Γ 1
2
(1I⊗ 1I− γ0 ⊗ γ0) 1

2
(1I⊗ 1I− γ5 ⊗ γ5 − γµ ⊗ γµ)

2

2

2
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Fig. 3. Strange meson spectrum (J > 0). In the middle of each column the experimental resonance positions [46] and their
errors are indicated by lines and shaded areas; the lines in the left and right part of each column represent the calculated masses
in model A and in model B, respectively. Note that the calculated K1 states are each 2-fold degenerate for spin S = 0 and
S = 1, indicated by “2”.

natural than other conceivable interpretations of these res-
onances: Then the mass centroid of the 2P multiplets is
around 1700 MeV and the multiplet partners of the a1

are expected nearby in mass provided that splittings due
to spin-orbit and tensor forces are small even for orbital
angular momentum L = 1 (P -wave) and L = 3 (F -wave).
Indeed, the Crystal Barrel collaboration observed a new
state, the a2(1660), in the reaction p̄p → π0ηη at 1.94
GeV/c [6]. A similar resonance has been reported in [5]
where the authors performed a combined K-matrix anal-

ysis of the GAMS, Crystal Barrel and BNL data. In ad-
dition there is also experimental evidence for the next
higher multiplet: The authors in [4] studied the process
p̄p → f2(1270)π in the mass range 1960–2410 MeV and
they observed a 1++ and a 2++ resonance around 2100
MeV which can be identified with the a1(2100) and the
a2(2100), respectively. They also found evidence for a 1++

resonance at 2340 MeV, (a1(2340)), a 4++ resonance at
2260 MeV, (a4(2260)), and two 3++ resonances at 2070
MeV and 2310 MeV, (a3(2070) and a3(2310)). However, as
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Table 2. New candidates for isovector resonances and their masses in [MeV]. The first and second columns show the name
and publication reference of each resonance, respectively; the third column contains the experimental mass and its error; the
calculated masses in the full Salpeter model (FSM) are shown in the fourth (model B) and in the seventh (model A) column. The
corresponding results in their nonrelativistic reduction models (NRM) are also shown. The sixth column shows some calculations
done by Godfrey and Isgur in their relativized quark model [15]. The dominantly P -wave and F -wave states of the a2 are labeled
by P and F , respectively. The dominantly F -wave and H-wave states of the a4 are labeled by F and H, respectively.

Name Ref. Exp. Mass Model B Godfrey & Isgur Model A

FSM NRM FSM NRM

a0(2025) [1] 2025 ± 30 2071 2250 – 1932a 1927a

a1(1640) [46] 1640 ± 42
1718 1845 1820 1876 1927

a1(1700) [3] 1700

a1(2100) [4] 2100 ± 20 2099 2250 – 2374 2528

a1(2340) [4] 2340 ± 40 2412 2586 – 2791 3073

a2(1660) [46] 1660 ± 40
P :1807 P :1845 P :1820 P :1931 P :1927
F :1768 F :1986 F :2050c F :1879 F :2002

a2(1750) [46] 1752 ± 25

a2(2100) [4] 2100+10
−30 P :2160 P :2250 – P :2411 P :2528

F :2141 F :2351 F :2050c F :2357 F :2584

a3(2070)
b [4] 2070± 20 1926 1986 2050 1951 2002

a3(2310) [4] 2310± 40 2247 2351 – 2401 2584

a4(2260) [4] 2260 ± 15 F :2341 F :2351 – F :2451 F :2584
H:2315 H:2492 – H:2402 H:2658

a As the a0 ground state appears at 1321 MeV in model A, we identify this state with the observed a0(1450) [46] and not with
the low-lying a0(980). Therefore we assign the observed a0(2025) [1] to the first radial excitation of the a0 in model A, whereas
in model B the stated masses (FSM: 2071 MeV, NRM: 2250 MeV) correspond to the second radial excitation.
b Although the a3(2070) seems to be the ground state in the 3++-sector it does not appear in the listings of the Particle Data
Group. Its mass is much more questionable than the well-established ground-state masses in all other sectors up to J = 6.
Therefore this state was excluded from the fit of the model parameters to the experimental ground-state masses.
c These masses belong to the same state. Clearly, its identification with the observed a2(2100) [4] does not account for the two
underlying a2-states, a2(1660) and a2(1750), listed in the latest PDG-issue [46].

already mentioned, neither modelA nor the model of God-
frey and Isgur produces masses around 1700 MeV and/or
2100 MeV which fit to the above quantum numbers. In
more detail, model A predicts the first radial excitation of
the (pure P -wave) a1 at 1876 MeV and the second radial
excitation at 2374 MeV. For the first radial excitation of
the a2, the model provides the dominantly F -wave state
at 1879 MeV below the dominantly P -wave state at 1931
MeV.

In the isoscalar sector (see table 3), the classification
of calculated and experimental resonances is more diffi-
cult due to the doubling of states by the additional s̄s
pair. However, the approximate flavour symmetry of the
inter quark forces suggests to expect the first nonstrange
radial excitation masses of the f1 and the f2 also around
1700 MeV and the corresponding second radial excitations
around 2100 MeV. The third nonstrange radial excitation
of the f1 should appear in a mass range of about 2300–
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Table 3. New candidates for isoscalar resonances and their masses in [MeV]. The first and second columns show the name
and publication reference of each resonance, respectively; the third column contains the experimental mass and its error; the
calculated masses in the full Salpeter model (FSM) are shown in the fourth (model B) and in the seventh (model A) column. The
corresponding results in their nonrelativistic reduction model (NRM) are also shown. The sixth column shows some calculations
done by Godfrey and Isgur in their relativized quark model [15]. The states labeled with n̄n contain nonstrange quarks only;
the states labeled with s̄s contain strange quarks only. The dominantly F -wave and H-wave states of the f4 are labeled by F
and H, respectively.

Name Ref. Exp. Mass Model B Godfrey & Isgur Model A

FSM NRM FSM NRM

f1(1700) [7] 1700 nn̄:1718 nn̄:1845 nn̄:1820 nn̄:1876 nn̄:1927
ss̄:1958 ss̄:2021 ss̄:2030 ss̄:2129 ss̄:2012

f1(2340) [7] 2340 ± 40 nn̄:2411 nn̄:2586 – nn̄:2791 nn̄:3073
ss̄:2681 ss̄:2774 – ss̄:3094 ss̄:2954

η2(2040) [7] 2040 ± 40 nn̄:1997 nn̄:2110 – nn̄:2156 nn̄:2266
ss̄:2231 ss̄:2279 – ss̄:2424 ss̄:2291

η2(2300) [7] 2300 ± 40 nn̄:2318 nn̄:2463 – nn̄:2593 ss̄:2753
ss̄:2571 ss̄:2641 – ss̄:2890 nn̄:2829

f3(2000) [7] 2000 ± 40 nn̄:1926 nn̄:1986 nn̄:2050 nn̄:1951 nn̄:2002
ss̄:2128 ss̄:2134 ss̄:2230a ss̄:2193 ss̄:2074

f3(2280) [7] 2280 ± 30 nn̄:2247 nn̄:2351 – nn̄:2402 nn̄:2584
ss̄:2476 ss̄:2514 ss̄:2230a ss̄:2684 ss̄:2553

f4(2320) [7] 2320 ± 30 nn̄;F :2342 nn̄;F :2351 – nn̄;F :2451 nn̄;F :2584
nn̄;H:2315 nn̄;H:2492 – nn̄;H:2402 ss̄;F :2553

a These masses belong to the same state.

2400 MeV and the first nonstrange radial excitation of
the f4 around 2300 MeV. Moreover, the isoscalar ground-
state partner of the a3 should appear around 2000 MeV
and its first radial excitation partner around 2300 MeV.
In fact, the authors in [7] found evidence for resonances
with these quantum numbers. They studied the process
p̄p→ π0π0η for beam momenta of 600–1940 MeV/c, cor-
responding to center of mass energies 1960–2410 MeV, and
found a 1++ resonance at 2340 MeV, the f1(2340) and a
4++ resonance at 2320 MeV, the f4(2320). The masses of
the isoscalar partners of the a3 were stated at 2000 MeV,
(f3(2000)), and at 2280 MeV, (f3(2280)). As in the isovec-
tor sector, we fix the mass centroid of the 2P nn̄ multi-
plet around 1700 MeV assuming that the f1(1700) is the
isoscalar partner of the a1(1700). Although the f1(1700)
was below the accessible mass range in [7], the assumption
above is supported by the mass degeneracy of the observed
f1(2340) with its isovector partner a1(2340). Now, due to
the flavour independence of the confinement interaction
used in our model, the calculated isoscalars are ideally
mixed and the nonstrange part of the spectrum is degen-
erate in mass with the corresponding isovector spectrum.
Therefore, also the isoscalar masses calculated in model A
are too high compared to the experimental values.

In order to fix the centroid of the 2P ss̄ multiplet,
we consider the following well-established splittings of
n̄n and s̄s isoscalar ground states listed by the Particle
Data Group [46]: [ω(782), Φ(1020)], [h1(1170), h1(1380)],
[η2(1645), η2(1870)], [ω3(1670), Φ3(1850)]. These mass
splittings of approximately 200–300 MeV leads to an ex-
pected centroid of the 2P s̄s multiplet at roughly 1950-
2050 MeV provided that the 2P nn̄ multiplet appears
around 1700 MeV as discussed above. Furthermore the
Particle Data Group [46] states two isoscalar 2++ reso-
nances, the f2(1950) and f2(2010), which fit to this energy
region such that an arrangement of one of these states
into the 2P ss̄ multiplet seems to be natural. However,
the mass calculations in model A for the strange part of
the isoscalar 2++ sector provide a dominantly F -wave f2
at 2148 MeV and a dominantly P -wave f2 at 2165 MeV
as can be seen in fig. 1. Moreover, the model produces the
first strange radial excitation state of the f1 at 2129 MeV.
So, the strange part of the isoscalar excitation spectrum
comes out too high in model A just like the nonstrange
excitation spectrum discussed above.

In view of these facts, a quarkonium interpretation for
the higher mass resonances seems still plausible but obvi-
ously can only be achieved with a new confinement force.
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3.1.2 Dirac Structure
Γ ⊗ Γ = 1

2 (1I⊗ 1I− γ5 ⊗ γ5 − γµ ⊗ γµ) (Model B)

From first principles QCD hardly gives any clue on
the Dirac structure of confinement. Consequently a
phenomenological study of different Dirac structures is
needed. The force with 1I ⊗ 1I − γ0 ⊗ γ0 has been found
by purely phenomenological arguments. Here the aim was
to reproduce the global structure of the meson mass spec-
trum, especially the well-established Regge trajectories.
Now we focus on some symmetry properties of the strong
interaction. For example the spontaneous breakdown of
the approximate chiral symmetry of light flavour QCD
leads to an effective theory, the well-known chiral per-
turbation theory, which interprets the eight lightest pseu-
doscalar mesons as Goldstone bosons and fixes their in-
teractions by symmetry requirements (apart from phe-
nomenological coupling constants). Furthermore it is be-
lieved that, due to the absence of a ninth light pseu-
doscalar meson, the axial U(1)-symmetry is explicitly bro-
ken by instantons. As we implement this by using the
instanton induced ’t Hooft interaction (see 3.4) it is in-
teresting to assume a confinement force with axial U(1)-
invariance in the present framework. We choose the struc-
ture

Γ ⊗ Γ =
1
2
(1I⊗ 1I− γ5 ⊗ γ5 − γµ ⊗ γµ) . (6)

Due to the UA(1)-invariance, this structure obviously
leads to parity doublets in the calculated meson spectrum
if one neglects the quark mass terms in the Salpeter equa-
tion (see fig. 4).

The above Fierz invariant combination of a scalar,
pseudoscalar and vector part was also investigated by
Böhm et al. (see [54]) as well as by Gross and Milana (see
[55]) but, unlike the investigations presented here, with-
out any connection to the complete experimental meson
spectrum.

As figs. 1–3 show, this Dirac structure yields ground-
state Regge trajectories M2 ∝ J that are as good as
the corresponding results achieved with the scalar time-
like vector force discussed above. However, both models
differ essentially in their results for the higher mass res-
onances: In contrast to model A, the calculated higher
excitation masses in model B agree remarkably well with
the newly observed resonances (see tables 2 and 3). Here,
deviations are in general less than 100 MeV. For instance,
the first radial excitation of the a1 appears at 1718 MeV
(see table 2), which means a lowering of about 160 MeV
compared to the corresponding mass calculated in model
A (1876 MeV). The second radial a1-excitation appears
at 2099 MeV, so it is even 275 MeV lighter than the cor-
responding mass in model A (2374 MeV), thus showing
excellent agreement with the observed resonance a1(2100)
[4]. For the third radial a1-excitation model B provides
2412 MeV compared to 2791 MeV in model A and 2340
± 40 MeV the corresponding value from experiment [4]. As
can be seen in table 2, not only the a1-excitation masses
are lowered in model B but also all other higher isovector
resonances listed there. Due to the flavour independence

of the confinement force, the same effect occurs in the
complete nonstrange and strange isoscalar spectrum (see
table 3).

In connection with this general lowering of excitation
masses in model B, we can confirm a recent observation
found by A. V. Anisovich, V. V. Anisovich and A. V.
Sarantsev [8] concerning the systematics of q̄q states with
respect to their radial excitation number. The authors
found that for given quantum numbers many mesons fit
to linear trajectories as

M2 =M2
0 + (n− 1)µ2 (7)

with M0 the mass of the ground-state meson (n = 1),
n = 2, 3, ... numerating the radial excitations and µ2 the
trajectory slope parameter whose value is suggested to be
in the region µ2 = 1.25 ± 0.15 GeV2. Figures 5 and 6
show several resonance positions taken from [8] and our
corresponding calculations of model A and model B. As
expected from the discussion of table 2 and table 3, the
trajectory slope µ2 as given in [8] is much too flat to pa-
rameterize the calculations of model A whereas the model
B calculations fit for many mesons to the formula in eq. (7)
with slope µ2 = 1.25± 0.15 GeV2 remarkably well.2

In summary, the calculated excitation masses of model
B are in general roughly 150–350 MeV lighter than the
corresponding masses of model A, hence in a much better
agreement with the newly discovered experimental reso-
nances. As we will show below, this significant mass low-
ering is related to the strong coupling between positive and
negative energy components of the Salpeter amplitude in
model B.

3.2 Nonrelativistic reduction of the Salpeter equation

In this subsection, we will show that the negative en-
ergy Salpeter components play an essential role for the
description of higher excitation states in the meson mass
spectrum. It is known from earlier works (see, e.g. [9,10])
that these components are very important in calculations
of electroweak observables, especially for deeply bound

2 However, a more detailed study of our calculations with
respect to eq. (7) would prefer especially for the π(10−+)- and
a0(10

++)-trajectories (fig. 5) a somewhat larger slope, namely
µ2(π(10−+)) = 1.59 GeV2 and µ2(a0(10

++)) = 1.56 GeV2.
Then the experimental resonances π(1300±100) and π(1800±
40) and the a0(2000

+50
−100) would fit much better to their corre-

sponding trajectories. Consequently, due to the higher slopes,
the parameterization in eq. (7) would lead to higher mass pre-
dictions, namely π(2189), π(2526) and a0(1588), a0(2375) in-
stead of π(2070), π(2380) and a0(1520), a0(2260) as stated in
[8]. The higher masses then would correspond to the model B
calculations π(2195), π(2496) and a0(1665), a0(2395).
A universal trajectory fit to our mass calculations provides an
average slope of µ2 = 1.42± 0.27 GeV2 which is roughly 14%
larger than the value µ2 = 1.25 ± 0.15 GeV2 suggested in [8].
However, this deviation should not be overinterpreted because
there is no obvious reason to demand an approximately unique
slope for all trajectories.
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Fig. 4. The a0-π ground-state mass difference as a function of the constituent quark mass mn calculated in model A (solid
line) and model B (dashed line). For vanishing constituent quark masses, the a0-π mass degeneracy in model B is a direct
consequence of the UA(1)-invariance of the Dirac structure

1
2
(1I ⊗ 1I − γ5 ⊗ γ5 − γµ ⊗ γµ). In model A this degeneracy is not

observed due to the UA(1)-violating scalar part of the structure 1
2
(1I ⊗ 1I − γ0 ⊗ γ0). The calculation was done without the

explicit UA(1)-breaking ’t Hooft interaction.

states. There it has been shown that a fully relativistic
treatment in the Salpeter framework improves the descrip-
tion of many observables (for example: pseudoscalar decay
constants, two photon decay widths) by orders of magni-
tude. In order to define the negative energy components
of the Salpeter amplitude Φ, we look at the nonrelativis-
tic reduction of the Salpeter equation. This reduction of
eq. (4) is reached by neglecting all momentum-dependent
terms in the energy projectors (formally by performing
here the limit mi → ∞) and by expanding the kinetic
energies ωi with respect to |pi|/mi � 1:

lim
mi→∞Λ±

i (p) = lim
mi→∞

ωi ± γ0("γp+mi)
2ωi

=

1
2
(1I± γ0) =: P± , (8)

ωi =
√

|p|2 +m2
i ≈ mi +

1
2
|p|2
mi

=: ω̃i for
|p|
mi

� 1 . (9)

Inserting these approximations, the Salpeter equation (4)
becomes

Φ(p) = + P−γ0

[∫
d3p′

(2π)3
V (p,p ′)Φ(p ′)
M + ω̃1 + ω̃2

]
γ0P+

− P+γ0

[∫
d3p′

(2π)3
V (p,p ′)Φ(p ′)
M − ω̃1 − ω̃2

]
γ0P− . (10)

Now, if we write the 4×4-matrices Φ and V Φ in block
matrix form as

Φ(p) =:
(
Φ11(p) Φ12(p)
Φ21(p) Φ22(p)

)

and

V (p,p ′)Φ(p ′) =:

(
(V Φ)11(p,p ′) (V Φ)12(p,p ′)
(V Φ)21(p,p ′) (V Φ)22(p,p ′)

)
,

where each component Φij and (V Φ)ij , i, j ∈ {1, 2} is a
2×2 matrix and apply the projectors P± in Dirac repre-
sentation3 on both sides of eq. (10), we get
(

0 Φ12(p)
Φ21(p) 0

)
=


 0

[∫
d3p′

(2π)3
(V Φ)12(p,p ′)

M−ω̃1−ω̃2

]
−

[∫
d3p′

(2π)3
(V Φ)21(p,p ′)

M+ω̃1+ω̃2

]
0


 .

For weakly bound states with M ≈ m1 +m2 one has

1
M + ω̃1 + ω̃2

� 1
M − ω̃1 − ω̃2

, (11)

so that the component Φ21 can be dropped. The above
matrix equation then decouples with respect to Φ12 and
Φ21 due to the smallness of Φ21. Therefore one can in-
terpret Φ++ := Φ12 as the upper (or positive energy)

3 Dirac representation of the γ matrices:

γ0 =

(
1I 0
0 −1I

)
,  γ =

(
0  σ
− σ 0

)
, γ5 =

(
0 1I
1I 0

)
.
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Fig. 5. The (n,M2)-trajectories for the states π(10−+), a0(10
++), ρ(11−−), a1(11

++), a2(12
++) and π2(12

−+). The resonances
indicated with the reference number [8] are predictions according to the formula M2 = M2

0 + (n− 1)µ2. The trajectory slopes
µ2 are taken from [8] and are approximately the same for all trajectories. The resonances without a reference number are well
established and listed in [46]. All other resonances have been indicated with the reference number where they have been seen
or predicted. The trajectory-like behaviour found in model B fits remarkably good to the slopes stated in [8].
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Fig. 6. The (n,M2)-trajectories for the states ρ(11−−), a2(12
++), a3(13

++), a4(14
++) and η2(02

−+). The resonances indicated
with the reference number [8] are predictions according to the formula M2 = M2

0 + (n − 1)µ2. The trajectory slopes µ2 are
taken from [8] and are approximately the same for all trajectories. The resonances without a reference number are listed in [46].
All other resonances have been indicated with the reference number where they have been seen or predicted.

component of the Salpeter amplitude Φ. Consequently,
Φ−− := Φ21 can be interpreted as the lower (or nega-
tive energy) component of Φ.4 One should emphasize that
the above approximate decoupling for weakly bound state

4 The special projector structure of the Salpeter equation
(4) allows to express the diagonal components Φ+− := Φ11

and Φ−+ := Φ22 in terms of Φ++ and Φ−− as

Φ+− = +c1 Φ++s− c2 s Φ−− (12)

Φ−+ = −c1 Φ−−s+ c2 s Φ++ , (13)

with the shorthand notations s =  σp, ci =
ωi

(ω1m2+ω2m1)
(see

[18] for details).
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solutions is a consequence of the Salpeter equation itself
and independent of the special form of the potential op-
erator V in Dirac space5. With usual constituent quark
masses of 300–400 MeV, one therefore can expect to find
different Dirac structures which all produce for example
the ρ-meson mass around 700–800 MeV with the same
potential parameters. However, for deeply bound states
(M � m1 +m2), on the one hand, and higher excitation
states (M � m1 +m2), on the other hand, neglecting the
negative energy components Φ−− is no longer justified.
So, in that case even in the nonrelativistic reduction the
Salpeter equation does not a priori decouple with respect
to Φ++ and Φ−− (see fig. 7). Since distinct potential Dirac
structures act on these components in different ways they
should also differ in the calculation of especially higher
excitation masses. This effect then can be used in order
to find an appropriate Dirac structure for the confinement
potential.

3.2.1 Nonrelativistic reduction of model A

The special Dirac structure of model A does not mix pos-
itive (Φ++) and negative (Φ−−) energy components of the
Salpeter amplitude Φ; the components Φ±∓ even vanish
completely as can be seen by explicit calculation:

Γ Φ Γ =
1
2
(1I Φ 1I− γ0 Φ γ0) =

(
0 Φ++

Φ−− 0

)
.

Therefore the only coupling between Φ++ and Φ−− is pro-
duced by the structure of the Salpeter equation itself due
to the off-diagonal terms γ0"γp in the energy projectors
Λ±. In the nonrelativistic reduction, these terms vanish
and the Salpeter equation with this Dirac structure then
decouples with respect to Φ++ and Φ−− irrespective of
calculating weakly bound states (M ≈ m1 +m2), deeply
bound states (M � m1 +m2) or higher excitation states
(M � m1 +m2):
(

0 Φ++(p)
Φ−−(p) 0

)
=




0
[∫

d3p′

(2π)3
Vc((p−p ′)2) Φ++(p ′)

M−ω̃1−ω̃2

]
[∫

d3p′

(2π)3
Vc((p−p ′)2) Φ−−(p ′)

(−M)−ω̃1−ω̃2

]
0




or equivalently

(HΦ++)(p) = +M Φ++(p) , (14)
(HΦ−−)(p) = −M Φ−−(p) , (15)

where the operator H is defined by

(HΦ±±)(p) := (ω̃1 + ω̃2)Φ±±(p)

+
∫

d3p′

(2π)3
Vc((p − p ′)2)Φ±±(p ′) . (16)

5 This statement is at least valid for the Dirac structures
discussed in the present paper.

For physical reasons, the potential parameters of Vc should
guarantee the positive definiteness of the operator H, i.e.
the eigenvalues M of H are all positive. Therefore the
negative energy component Φ−− has to vanish and we end
up with the equation for the positive energy component
Φ++ which is nothing else but the usual nonrelativistic
Schrödinger equation for two spin-12 particles moving in a
spin-independent confinement potential.

3.2.2 Nonrelativistic reduction of model B

Whereas the structure 1
2 (1I⊗ 1I− γ0 ⊗ γ0) decouples with

respect to Φ++ and Φ−−, the combination 1
2 (1I⊗ 1I− γ5 ⊗

γ5 − γµ ⊗ γµ) leads to relative strong couplings:

Γ Φ Γ =
1
2
(1I Φ 1I− γ5 Φ γ5 − γµ Φ γµ) =(

0 Φ++

Φ−− 0

)
− 1

2

(
Φ−+ Φ−−
Φ++ Φ+−

)

+
1
2

(−"σΦ−+"σ "σΦ−−"σ
"σΦ++"σ −"σΦ+−"σ

)
.

Here we have combined the timelike vector part of γµ⊗γµ

with the scalar part such that the first term on the right-
hand side is nothing else but the result from the Dirac
structure of model A. The second term, which arises from
the pseudoscalar part, swaps the positions of Φ++ and
Φ−− and of Φ+− and Φ−+, respectively. The same ex-
change of components is generated by the vector part but
with an additional left-right multiplication by the Pauli-
matrices "σ.

In the nonrelativistic reduction the components Φ+−
and Φ−+ vanish and for each spin (S = 0, 1) the Salpeter
equation can be written as a system of two coupled 2×2
matrix equations (see Appendix):

[H(Φ±± + Φ∓∓)
]
(p) = ±MΦ±±(p) for S = 0 , (17)[H(Φ±± − Φ∓∓)

]
(p) = ±MΦ±±(p) for S = 1 , (18)

where the operator H is defined as in eq. (16).6
The matrix equations (17) and (18) show that even in

the nonrelativistic reduction the Dirac structure produces
6 Equation (17) and (18) exhibit an interesting symmetry

concerning spin singlet and spin triplet solutions: For given
mass ±M on the right-hand side, a spin singlet solution (Φ++,
Φ−−) can be transformed into a spin triplet solution with the
same mass by the transformation

(Φ++, Φ−−) −→ (±Φ++,∓Φ−−). (19)

So, in the nonrelativistic reduction the very special combina-
tion of coefficients in the Dirac structure 1

2
(1I⊗ 1I− γ5 ⊗ γ5 −

γµ ⊗ γµ) leads to a mass degeneracy of singlet and triplet spin
states although there is an explicit spin dependent term ( γ⊗ γ)
in the potential. As an example, fig. 8 shows the (spin triplet)
ρ-mass and the (spin singlet) π-mass as a function of the pa-
rameter m̃ := mΛ

mn
tuning the nonrelativistic reduction of the

Salpeter equation by increasing the quark mass in the energy
projectors Λ± indicated by mΛ.
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Fig. 7. The squared masses of the isovector Regge trajectory members ρ, ρ3 and ρ5 as a function of the constituent quark mass
mΛ in the energy projectors (see eq. (5)) calculated in the nonrelativistic (Schrödinger equation) model [14] (dotted lines), in
the full Salpeter model with Dirac structure 1

2
(1I⊗1I−γ0⊗γ0) (solid lines) and with Dirac structure 1

2
(1I⊗1I−γ5⊗γ5−γµ⊗γµ)

(dashed lines). The calculations were done with the single parameter set of the nonrelativistic (Schrödinger equation) model
[14]. Whereas the nonrelativistic reduction (mΛ → ∞) of the structure 1

2
(1I ⊗ 1I − γ0 ⊗ γ0) coincides with this model (see eq.

(12)), the negative energy components Φ−− generated by the structure 1
2
(1I⊗ 1I− γ5 ⊗ γ5 − γµ ⊗ γµ) do not vanish in this limit

(see eq. (26) and (27)). They lead to significantly negative mass shifts with respect to the nonrelativistic model calculations.
The more the meson mass M differs from the weakly bound state condition M ≈ m1 +m2 (see eq. (8)) the larger are these
effects.

nonvanishing negative energy components Φ−−. This can
be also seen in fig. 10 where the positive and negative
energy components of the ground state a1 radial ampli-
tudes are shown. The same calculation was done with
the structure 1

2 (1I⊗ 1I− γ0 ⊗ γ0) (fig. 9) and as expected
here the negative energy component completely vanishes
in the nonrelativistic reduction. The fully relativistic cal-
culation of course produces nonvanishing negative energy
components also in model A. Whereas the magnitudes of
the ground state a1 amplitudes in model A and model
B roughly coincide, the corresponding amplitudes of the
first radial a1-excitation differ substantially in both mod-
els (see fig. 11, fig. 12). Especially the negative energy
component produced in model B (fig. 12) is much larger
than its corresponding counterpart in model A (fig. 11).
This strong coupling between negative and positive en-
ergy components in model B has of course an effect on
the calculated bound-state masses. An instructive illus-

tration of this effect is shown in fig. 13: Starting with
the kinetic energy we have separated the total mass of
the first and second radial a1-excitation into the poten-
tial expectation values with respect to the positive energy
components only and with respect to all components. As
expected from the magnitudes of the corresponding radial
amplitudes the mass lowering caused by the negative en-
ergy components is much larger in model B than in model
A. In case of the second radial a1-excitation this effect
results in a mass difference of about 300 MeV.

3.3 Spin-orbit effects

Finally, we want to point out the most outstanding feature
of the Dirac structure 1

2 (1I⊗1I−γ5⊗γ5−γµ⊗γµ), i.e. the
generation of additional spin-orbit mass splittings due to
the nonvanishing components Φ±∓ of the Salpeter ampli-
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The calculation was done without the ’t Hooft interaction.
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Fig. 9. Positive (R+) and negative (R−) energy components of the ground-state radial a1-amplitude in the nonrelativistic
(left) and fully relativistic version (right) of model A.

tude Φ. As we will see in the next subsection, these addi-
tional spin-orbit effects in model B provide a completely
different interpretation of the scalar meson ground-state
nonet compared to the interpretation proposed by model
A. In order to study the spin-orbit effects, we decompose
the Dirac structure 1

2 (1I⊗ 1I− γ5 ⊗ γ5 − γµ ⊗ γµ) with re-
spect to the components Φ±∓ and introduce the spin-orbit
parameter α ∈ [0, 1

2 ] as follows:

ΓΦ Γ (α) =
1
2
(1I Φ 1I− γ0 Φ γ0)− α(γ5 Φ γ5 − "γ Φ "γ) =(

0 Φ++

Φ−− 0

)
− α

(
Φ−+ Φ−−
Φ++ Φ+−

)
+ α

(−"σΦ−+"σ "σΦ−−"σ
"σΦ++"σ −"σΦ+−"σ

)
.

If α = 0, the components Φ±∓ vanish and the Dirac
structure of model A is reproduced, i.e. Γ Φ Γ (0) =

1
2 (1I ⊗ 1I − γ0 ⊗ γ0); for α = 1

2 , the above expression co-
incides with the structure of model B, i.e. Γ Φ Γ (1

2 ) =
1
2 (1I⊗1I−γ5⊗γ5−γµ⊗γµ). In figs. 14 and 15, the ground-
state masses of the a1(1++), a0(0++) and the K1(1+),
K∗

0 (0
+) are shown as a function of the spin-orbit param-

eter α. For vanishing α, no spin-orbit effects are observed
whereas for α = 1

2 the resulting a1-a0 and K1-K∗
0 mass

splitting7 add up to 280 MeV and 220 MeV, respectively.
This splitting then yields an isovector(isoscalar) ground
state a0 (f0) at 944 MeV and an isodoublet ground state

7 As the calculation was done without the ’t Hooft inter-
action, the α-dependence of the f1(1

++) and f0(0
++) com-

pletely coincides with the behaviour of their isovectorial part-
ners a1(1

++) and a0(0
++).
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(left) and fully relativistic version (right) of model A.
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K∗
0 at 1100 MeV. So, due to additional spin-orbit forces,

model B produces the basic scalar ground-state mass cen-
troid at roughly 1 GeV in contrast to roughly 1.3 GeV in
model A. In what follows we will see that this lowering
of about 300 MeV combined with the instanton induced
’t Hooft interaction leads to a completely different nonet
classification of the scalar mesons in both models.

3.4 ’t Hooft’s interaction and mesons with J = 0

As it stands the confinement force discussed above is re-
sponsible for the global structure of the experimental mass
spectrum. Especially the well established Regge trajecto-
ries can be described by this force alone. However, the
comparably large mass splittings in the pseudoscalar sec-
tor require an additional residual interaction which should
feature an explicit flavour dependence in order to describe
the η-η′-mixing and the η-π mass difference of about 400
MeV. In fact, ’t Hooft and others computed a flavour de-
pendent effective quark interaction from instanton effects
[16,25,26] whose point-like two body part can be written
as [17]

∆L(2) = 3
16

∑
i

∑
k,l

m,n

∑
ck,cl

cm,cn

geff(i)εiklεimn

× [(
Ψ̄k,ck

1I Ψn,cn

) (
Ψ̄l,cl

1I Ψm,cm

)

+
(
Ψ̄k,ck

γ5 Ψn,cn

) (
Ψ̄l,cl

γ5 Ψm,cm

)]
×

(
3
2
δckcn

δclcm
− 1

2
δckcm

δcncl

)
, (20)

where i, k, l,m, n ∈ {u, d, s} are flavour and ck, cl, cm, cn ∈
{r, g, b} colour indices. The ε-tensors explicitly show that
this force only acts on antisymmetric flavour states. Fur-
thermore, due to the positive sign in the Dirac structure
(1I ⊗ 1I + γ5 ⊗ γ5), the UA(1)-invariance is explicitly bro-
ken such that the UA(1)-problem is in principle solved by
this interaction. Note that due to the point-like nature
and specific Dirac structure, the Instanton Induced Inter-
action (III) in the above formulation acts on states with
total angular momentum J = 0 only. The lowest order
contribution of this interaction to the Bethe-Salpeter ker-
nel can be extracted as [17]∫

d3p′

(2π)3
VIII(p,p ′)Φ(p ′) = 4 G(g, g′)×

∫
d3p′

(2π)3
RΛ(p,p ′)

(
1Itr [Φ(p ′)] + γ5tr

[
Φ(p ′)γ5

])
, (21)

whereRΛ represents a regularization function andG(g, g′)
is a flavour matrix while summation over flavour indices
is understood. The coupling strengths g (acting on a non-
strange q̄q pair), g′ (acting on a nonstrange-strange q̄q
pair) and the finite effective range Λ = ΛIII are treated
as free parameters in our model. We fix them in the pseu-
doscalar sector in order to reproduce the experimental π-
K-η-η′ mass splitting. The resulting values for the ’t Hooft
parameters in model A and model B can be found in ta-
ble 1 and the corresponding pseudoscalar mass spectra up
to 2.5 GeV are shown in the left part of fig. 16. For a more
detailed discussion of the pseudoscalar mesons and their
electroweak properties we refer to [40]; here we only want
to comment on the η(1295) and η(1440): both, model A
and model B produce only one q̄q state in the mass region
1200–1500 MeV of the isoscalar 0−+-spectrum as can be
seen in fig. 16. The calculated masses (1533 MeV in model
A, 1446 MeV in model B) would prefer an identification
of the η(1440) as the first radial excitation of the ground
state η such that the η(1295) is out of place in our quark
model. Indeed, there are strong experimental hints for a
non q̄q interpretation of this resonance [49,50]8 due to
its absence in the reaction pp̄ → π+π−π+π−η. Further-
more, disregarding the η(1295) in the discussion of the
η,η′ radial excitation spectrum, the bulk of observed and
predicted isoscalar 0−+-resonances fits to the trajectory-
like behaviour M2 = M2

0 + (n − 1)µ2 in model B, with
an average slope µ2(00−+) = 1.73 ± 0.08 GeV2 (see the
right-hand side of fig. 17).

Now, for the sake of completeness concerning the non-
relativistic reduction of our model, we also present this
limit for the ’t Hooft interaction:

8 The author in [49,50] suggest the η(1440) to be the first
radial excitation of the ground state η compatible with our
model calculations. Furthermore, in a forthcoming paper [36]
we will show, that model B predicts partial decay widths of
the η(1440) into a0(980)π, K

∗K and ησ in excellent agreement
with the experimental values found in [50].
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++)- and a0(0

++)-mass as a function of the spin-orbit parameter α calculated with the con-
finement parameters of model B (A = −1135 MeV, B = 1300 MeV/fm). For α = 0, the Dirac structure 1

2
(1I ⊗ 1I − γ0 ⊗ γ0) −

α(γ5 ⊗ γ5 − γ⊗ γ) reduces to the structure of model A and no spin-orbit splitting is observed; for α = 0.5, it coincides with the
structure of model B and generates a spin-orbit splitting of about 280 MeV. As the calculation was done without the ’t Hooft
interaction, the isoscalar partners f1(1

++) and f0(0
++) show the same behaviour with respect to the spin-orbit parameter α.
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2
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reduces to the structure of model A and no spin-orbit splitting is observed; for α = 0.5, it coincides with the structure of model
B and generates a spin-orbit splitting of about 220 MeV. The calculation was done without the ’t Hooft interaction.
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(
0 Φ++(p)

Φ−−(p) 0

)
=


 0

[
4 G

∫
d3p′
(2π)3

RΛ(p,p ′)tr[Φ++(p ′)+Φ−−(p ′)]
M−ω̃1−ω̃2

]
−

[
4 G

∫
d3p′
(2π)3

RΛ(p,p ′)tr[Φ++(p ′)+Φ−−(p ′)]
M+ω̃1+ω̃2

]
0


 .

So, even in the nonrelativistic reduction, the ’t Hooft
interaction couples positive and negative energy compo-
nents as can be seen from this expression. Furthermore
the term proportional to the identity in eq. (21) vanishes
such that in the nonrelativistic reduction the ’t Hooft in-
teraction does not act for scalar but only for pseudoscalar
mesons. In fact, the same instanton induced interaction
has been used before in a nonrelativistic description within
the framework of the Schrödinger equation9, both for
mesons and baryons [14]; a satisfying description of the
low-lying hadronic mass spectrum, especially the split-
ting of the pseudoscalar nonet, was obtained. However,
the quoted nonrelativistic model is not able to provide a
proper description of the scalar nonet due to the absence
of any singlet-octet mixing mechanism in this sector.

9 In the framework of the Schrödinger equation, the negative
energy components Φ−− were completely neglected.

3.4.1 Scalar mesons in model A

Now, from an earlier work [19] we know that the present
relativistic framework exhibits a natural way to cure this
shortcoming. There it has been shown that the light scalar
mesons can be interpreted as conventional q̄q states, with
a small SU(3) mixing angle, governed dynamically by
’t Hooft’s instanton induced interaction. The calculations
were done in confinement model A such that the mass
centroid of the scalar meson nonet was found at roughly
1.3 GeV as discussed in the previous subsection. Then
the ’t Hooft interaction, fixed in the pseudoscalar sector,
provided an almost SU(3) octet at about 1400 MeV and
a low-lying SU(3) singlet at 1000 MeV. In more detail,
fig. 18 shows the generated mass splitting of the scalar
flavour nonet due to the ’t Hooft interaction in model A.
The dominantly singlet states are lowered whereas states
with dominantly flavour octet structure are pushed to
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Fig. 17. The (n,M2)-trajectories for the states η(00−+) and η′(00−+). The resonances indicated with the reference number [8]
are predictions according to the formula M2 = M2

0 + (n− 1)µ2. The resonances without a reference number are listed in [46].
On the left-hand side the trajectory slopes µ2 are taken from [8] and the η(1295) is involved. However, the situation concerning
the radial excitations of the η and η′ is not clear: In our model, we do not have a serious candidate for the η(1295) to be the
first radial excitation of the η. This is compatible with the observations made in [49,50]. Therefore we propose the classification
of the η and η′ spectrum shown on the right-hand side, where the η(1295) does not occur.

higher masses by this interaction. The calculated ground-
state masses are predicted to be a0(1321), K∗

0 (1426),
f0(984) and f0(1468), so they imply a q̄q interpretation of
the following experimental resonances (see [46]): a0(1450),
K∗

0 (1430), f0(980) and f0(1500). A detailed discussion of
this interpretation is given in [19].

3.4.2 Scalar mesons in model B

In confinement model B the corresponding states appear
at masses which are roughly 200–300 MeV lighter due to
the additional spin-orbit effects in this model (see fig. 19):

a0(1057), K∗
0 (1187), f0(665), f0(1262).

Before we will compare the masses of these states not only
with the resonance positions of [46] but also with the K-
matrix pole analysis of V. V. Anisovich and others (see for
instance [22]), we make some general remarks concerning
the scalar nonet classification.

General remarks:

– First of all one should emphasize that, apart from the
higher radial excitation states discussed in the previ-
ous subsection, nowhere else in the calculated mass
spectrum the differences between model A and model
B are as large as in the scalar sector discussed here.
This is a very interesting observation, because the
scalar sector is the only area in the experimental spec-
trum where mass differences of about 300 MeV do not
necessarily imply a dismission of one of these mod-
els. The reason is the abundant number of experi-
mental scalar resonances combined with many differ-
ent interpretations of their physical nature (a detailed
and instructive overview is given in [29,30] and also
in [31]). Especially the scalar isoscalar sector features
a highly complex resonance structure which to ex-
plain is still the most challenging task in meson spec-
troscopy. For instance, the Particle Data Group [46]
lists the following four scalar isoscalar resonances up
to 1500 MeV: f0(400–1200) (or σ-meson), f0(980±10),
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f0(1370+130
−170), f0(1500 ± 10). In order to understand

the internal structure of these resonances, an attempt
to interpret them as members of the 13P0 and 23P0

light-quark nonet is of course the first step one has
to do. For that, some kind of mass centroid has to
be given around which the members of these nonets
then split up due to different quark flavours, that is
to say, due to different quark mass contents and, of
course in the present model, due to different influ-
ences of the instanton-induced ’t Hooft interaction on
these states. As the isodoublet mesons K∗

0 (1430) and
K∗

0 (1950) are the least controversial of the light exper-
imental scalar mesons and as they contain one strange
and one nonstrange quark, it seems to be obvious to
use their masses as fixpoints for the 13P0 and 23P0

quark-antiquark nonet, respectively, independent from
any theoretical description. This scale then favours
ground-state nonet interpretations in the mass region
of about 1200–1600 MeV which is in roughly agree-
ment with the energy scale in model A.10

– However, V. V. Anisovich [22] claims that the quoted
mass region is noticeably higher than the average
masses of other mesons which are candidates for the
corresponding scalar nonet. In more detail, the ex-
perimentally well-established resonances a0(980) and
f0(980) are often excluded from a discussion of the
scalar meson ground-state nonet due to their small
masses compared to the above scale. In addition, their
decay properties are often entitled as unusual with
respect to “ordinary” q̄q mesons which then lead to

10 For example, Amsler and Close [41] built a reasonable
scalar nonet in the quoted mass region with the a0(1450) and
K∗

0 (1430) setting the mass centroid, and their widths setting
the scale of the nonet widths.
Assuming the scalar ground-state nonet above 1.3 GeV, Lee
and Weingarten [52,53] found in their lattice gauge theory cal-
culations the f0(1710) to be composed mainly of the lightest
scalar glueball. They claim that 0++-resonances below 1.3 GeV
are irrelevant to glueball spectroscopy.
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mainly non-q̄q interpretations of these resonances11.
In this context the designation “ordinary” q̄q mesons
means pure nonstrange 0++ 3P0 q̄q states which
could be a natural first assignment for these reso-
nances. For instance, Godfrey and Isgur [15] argue
that this pure nonstrange classification has at least

11 For instance, Weinstein and Isgur argue that the a0(980)
and f0(980) can be understood as K̄K molecules [32,37]. The
mass degeneracy and their proximity to the K̄K threshold
seems to require that the nature of both states must be the
same. Also T. Barnes [38] sides with these authors; he claims
that the K̄K molecule picture of the a0(980) and f0(980) is
supported by their small two photon decay widths. F. E. Close,
Yu. L. Dokshitzer, V. N. Gribov et al. [45] suggest to interpret
the a0(980) and the f0(980) as new types of vacuum excita-
tions (“vacuum scalars”) which correspond to quark-antiquark
pair creations below the Fermi surface. The Jülich group [21]
shows that scattering and production data on the a0(980) and
f0(980) can be fitted by a sum of s-channel and t-channel ex-
changes without the need for genuine resonances at the K̄K
threshold. On the other hand, Morgan and Pennington find a
f0(980) pole structure characteristic for a genuine resonance
of the constituents and not of a weakly bound system [33,34],
that is to say, the extremely attractive I = 0 K̄K interaction
may not support a loosely bound state, whereas the I = 1
K̄K interaction is weak and may generate a K̄K molecule, the
a0(980).
However, there are also attempts to interpret both the f0(980)
and the a0(980) as members of the q̄q nonet: Törnqvist [35]
claims that these resonances have very large virtual compo-
nents of K̄K in their wave functions. However, in order to
fit the available data on the a0(980), f0(980), f0(1300) and
K∗

0 (1430) mesons as a distorted 0++ q̄q nonet, he has to use a
lot of parameters (5-6) plus an ad hoc introduced form fac-
tor which simulates the overlapping wave functions in the
corresponding hadronic decay processes. Minkowski and Ochs
[51] identify the states f0(980) and a0(980) together with the
f0(1500) and K∗

0 (1430) as the members of the scalar ground-
state nonet. They claim that this assignment is supported by
phase shift analyses of elastic and inelastic ππ scattering as
well as recent analyses of p̄p annihilation near threshold.
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two unpleasant consequences in their “relativized”
one-gluon-exchange-plus-linear-confinement potential
model: Firstly, their model does not account for the
experimental fact that both states have sizeable cou-
plings to K̄K final states, suggesting a large strange
quark component. Secondly, their model provides
strong decay widths Γ (f0(980) → ππ) ≈ 400–1000
MeV and Γ (a0(980) → ηπ) ≈ 500 MeV which
even overestimate the experimental total widths [46]
Γ tot

exp(f0(980)) = 40 − 100 MeV and Γ tot
exp(a0(980)) =

50–100 MeV by at least one order of magnitude. In ad-
dition, their model predicts two photon decay widths
[38] for f0(980) → γγ and a0(980) → γγ which are 5-8
times larger than the corresponding measured values.
As the quoted model describes the decay properties of
the vector and tensor q̄q states with satisfying success,
the f0(980) and a0(980) were suggested as appropriate
candidates for non-q̄q interpretations.

Comparison with resonance positions of [46]:

– In contrast, the present fully relativistic quark model
with instanton induced forces allows a q̄q interpreta-
tion of either the f0(980) (in model A: the f0(984);
see [19] for a detailed interpretation of this state) or
the a0(980) (in model B: the a0(1057)), i.e. we can-
not account for a q̄q interpretation of both states in
a single confinement model. The model calculations of
the total strong decay widths (the detailed treatment
will be presented in a forthcoming paper [36])12, pro-
vide Γ tot(f0(980)) = 126 MeV and Γ tot(a0(980)) =
55 MeV in good agreement with experiment. Fur-
thermore, the invariant coupling ratio r(a0(980)) =
g2

K̄K
/g2

ηπ is predicted to be r = 1.21 which excellently
fits to the latestK-matrix pole analysis of Crystal Bar-
rel and CERN-Münich data (r = 1.05 − 1.35) done
by A. V. Sarantsev [20]. Last but not least, we find
Γ (a0(980) → γγ) = 0.50 keV [40] in model B, which
is in reasonable agreement with the experimental esti-
mate Γ exp(a0(980) → γγ) = (0.30 ± 0.10) keV given
in [46]. In summary, the model B calculations do sup-
port a q̄q interpretation of the a0(980); even more, the
results in this model may support its identification as
the isovector member of the basic 13 P0 q̄q multiplet.

– In the isoscalar sector, model B yields a very low-
lying dominantly singlet state at 665 MeV which may
be identified with the broad structure f0(400 − 1200)
(or σ-meson) [46] and a state with dominantly flavour
octet structure at 1262 MeV suggesting an identifi-
cation with the observed f0(1370+130

−170) [46]. Further-
more, also model B (as does model A) accounts for

12 In [36], we will present the interference of two different
strong decay mechanisms: instanton induced decay contribu-
tions from six quark interactions which were studied in [39]
for the first time, and quark loop contributions which not only
occur for scalar and pseudoscalar mesons but also for mesons
with J > 0.

the f0(1500) [46] as a q̄q state13 and not a glueball14
as can be seen in the right part of fig. 16 where the
complete scalar excitation spectrum up to 2.5 GeV is
shown. Whereas in model A the calculated mass at
1468 MeV is identified with the dominantly octet state
of the scalar ground-state nonet, model B provides a
dominantly singlet state at 1554 MeV which then be-
longs to the first excited scalar nonet. However, in view
of the complexity in this sector that arises from strong
decay channel couplings and possible mixtures with
gluonic or other exotic states, one has to regard also
decay observables for a more realistic interpretation
of the scalar mesons. Some results concerning the γγ
decays of these states can be found in [40]; a more de-
tailed discussion which also includes numerical results
on strong decay widths will be given in a forthcoming
paper (see [36]).

– The classification of the calculated scalar isodoublet
states with respect to the listed 1

20
+-resonances of the

Particle Data Group [46] faces a problem in model
B: compared to the PDG value of the lightest scalar
kaon, MK∗

0
≈ 1430 MeV (see [46]), the corresponding

model ground state appears at 1187 MeV. As discussed
above, this lowering of about 250 MeV is a direct con-
sequence from the additional spin-orbit forces in con-
finement model B (see fig. 15).

Comparison with K-matrix poles from Anisovich et al.:

– V. V. Anisovich and coworkers [22–24,42–44] sug-
gested to identify the q̄q states not with mean reso-
nance positions but rather with the poles of the K-
matrix fits to the relevant data sets, the so-called
“bare states”. They emphasize that pure quark model
calculations (as for instance the present one) do not
take into account the resonance decay, that is to say,
these calculations neglect any effects of decay-channel
couplings on the meson masses. Therefore there are
good reasons to compare our calculated masses to bare
states. Unfortunately, up to now such aK-matrix anal-
ysis has not been performed for all quantum numbers,
so in many meson sectors the bare states are unknown
such that an overall comparison with our masses is not
possible. Moreover, from our point of view in many sec-
tors significant differences in mass shifts between bare
states and real resonances would be unpleasant due to
the fact that our model calculations agree well with the
global structure of the experimental mass spectrum.

– However, stimulated by the problems mentioned above
with respect to the scalar nonet classification just in
this sector a multitude of experimental data sets has
been analysed by K-matrix pole techniques. The most
interesting result of these analyses is, that the mem-
bers of the bare scalar ground-state nonet do not ap-
pear around 1.3–1.4 GeV but in a mass region which is

13 Again we refer to the paper [36] for a more solid explanation
of a q̄q interpretation of the f0(1500).
14 The interpretation of the f0(1500) as the ground-state glue-
ball mixed with close-by conventional scalar mesons is strongly
favoured by Amsler and Close [41].
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roughly 200–300 MeV lighter than this scale, namely
[22–24,42–44]

abare
0 (960± 30),K∗ bare

0 (1200+90
−150),

fbare
0 (720± 100), fbare

0 (1260+100
−30 ).

In particular, the lightest scalar bare kaon appears 200
MeV lower than the amplitude pole. And in fact, the
calculated scalar ground-state nonet of model B shows
a remarkable agreement with these bare states as can
be seen in fig. 19.15

– In addition to the scalar ground-state nonet, the scalar
first excited nonet of confinement model B

a0(1665),K∗
0 (1788), f0(1554), f0(1870)

also coincides with the K-matrix results of the au-
thors in [22–24,42–44]. They found the following bare
23P0 q̄q nonet16:

abare
0 (1640± 40),K∗ bare

0 (1820+40
−60),

fbare
0 (1600± 50), fbare

0 (1810+30
−100).

Summarizing, the present fully relativistic confining quark
model with ’t Hooft’s instanton induced force as resid-
ual interaction allows to generate scalar q̄q states, whose
15 The low absolute value for the scalar mass centroid of about
1.0–1.1 GeV in model B is not really astonishing due to the
UA(1)-invariance of the Dirac structure 1

2
(1I ⊗ 1I − γ5 ⊗ γ5 −

γµ ⊗ γµ) : As discussed above, in the limit of vanishing con-
stituent quark masses this invariance leads to parity doublets in
the meson mass spectrum. So, in this model the mass splitting
between states which only differ in their parity quantum num-
ber is mainly caused by the nonvanishing quark mass terms in
the Salpeter equation. The ground states of the strange vector
mesonsK∗ andK1 then provide an appropriate estimate of this
mass splitting. Their calculated masses differ by approximately
∆M ≈ 400 MeV which also fits to the splitting between the
ground-state masses of the nonstrange parity partners ρ and
a1. Finally, neglecting the UA(1)-violating ’t Hooft interaction
the mass of the lightest pseudoscalar kaon K(0−) would ap-
pear at roughly 700 MeV (see [40]) indicating to expect the
ground-state mass of the parity partner K∗

0 (0
+) around 700

MeV + 400 MeV = 1100 MeV, and in fact, this is the value
produced by the model B calculations (see fig. 19).
16 There exists a second K-matrix solution for the 23P0 q̄q
nonet: the authors in [22–24,42–44] find a third scalar isoscalar
bare state between 1200-1600 MeV, the fbare

0 (1235±50), which,
instead of the fbare

0 (1600 ± 50), can also be used to com-
plete the 23P0 q̄q nonet. So, one of the scalar isoscalar bare
states in the mass region 1200–1600 MeV is superfluous for
the q̄q classification and may be connected to the lightest
scalar glueball. The K-matrix solutions lead to positions of
the amplitude poles in the complex mass plane whose real
part may be compared to average mass values taken from
the Particle Data Group [46] ([position of the real part in
MeV, PDG 00 [46]]): [988± 6, a0(980)], [1415± 25,K∗

0 (1430)],
[1015 ± 15, f0(980)], [1300 ± 20, f0(1370

+130
−170)], [1499 ±

8, f0(1500)], [1530+90
−250, f0(1370

+130
−170)], [1565 ± 30, a0(1450)],

[1780± 30, f0(1710)], [1820± 40,K∗
0 (1950)].

masses and flavour mixings essentially depend on the con-
finement Dirac structure: The UA(1)-violating structure
1
2 (1I ⊗ 1I − γ0 ⊗ γ0) fixes the basic mass centroid of the
ground-state nonet at roughly 1.3 GeV, which the ’t Hooft
interaction then splits into an almost pure flavour singlet
f0-state at roughly 1 GeV and the flavour octet states f0,
a0, K∗

0 in the mass region around 1.4 GeV (see [19] for a
detailed interpretation of these states).
In contrast, the UA(1)-invariant Dirac structure 1

2 (1I⊗1I−
γ5 ⊗ γ5 − γµ ⊗ γµ) produces the basic mass centroid of
the scalar ground-state nonet at about 1.0–1.1 GeV. Here
the ’t Hooft interaction lowers the dominantly flavour sin-
glet f0-state to roughly 700 MeV and pushes the domi-
nantly flavour octet f0-state to approximately 1.3 GeV.
The lightest a0-state appears at 1057 MeV and its de-
cay properties are compatible with a q̄q interpretation
of the a0(980). The lightest scalar kaon appears roughly
200 MeV lower than the corresponding PDG-resonance
K∗

0 (1430) [46]. However, as the model presented here does
not take into account any effects of decay-channel cou-
plings on the meson masses, we followed a suggestion of
V. V. Anisovich and coworkers [22–24,42–44], not to iden-
tify our calculations with the real observed resonances but
with the K-matrix poles deduced from appropriate data
sets. This assignment then not only fits to the calculated
members of the ground-state scalar nonet but also to their
first radial excitation states in confinement model B.

4 Summary and conclusion

Within the framework of a relativistic quark model based
on the instantaneous Bethe-Salpeter equation, we have
studied two different Dirac structures for a linearly rising
confinement potential with respect to the complete meson
spectrum. It was shown that an UA(1)-invariant structure
of the form 1

2 (1I⊗ 1I− γ5 ⊗ γ5 − γµ ⊗ γµ) (model B) pro-
vides an excellent description of the experimentally well
established Regge trajectories just as the scalar time-like
vector combination 1

2 (1I ⊗ 1I − γ0 ⊗ γ0) (model A) which
has been used in earlier works. However, since the corre-
sponding radial excitation spectra were found to be very
different in both models we extended the comparison with
the experimental data to a multitude of new resonances
in the mass region 1000–2400 MeV observed in the Crys-
tal Barrel p̄N -annihilation data during the last few years.
Whereas the model calculations done with the structure
1
2 (1I⊗1I−γ0⊗γ0) overestimate these new data by roughly
150–350 MeV, the combination 1

2 (1I⊗1I−γ5⊗γ5−γµ⊗γµ)
produces masses in remarkably good agreement with the
newly observed resonances. Here the deviation is in gen-
eral less than 100 MeV. Furthermore, the squared masses
of the excited states in model B show for given quantum
numbers, in contrast to model A, a linear dependence on
their radial excitation number, M2 ∝ n, very similar to
the behaviour of many experimental resonances recently
observed by A. V. Anisovich, V. V. Anisovich and A. V.
Sarantsev [8]. We thus can now relate this observation to
the quark-antiquark confinement dynamics in the frame-
work of a constituent quark model. We found that the
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lowering of radial excited states in model B is a direct
consequence of the strong coupling between positive and
negative Salpeter energy components due to the γ5- and
γµ-part in the structure 1

2 (1I ⊗ 1I − γ5 ⊗ γ5 − γµ ⊗ γµ).
This effect was illustrated by carrying out the nonrela-
tivistic reduction of both Dirac structures and it turned
out that the Salpeter equation in model A reduces to the
usual Schrödinger equation whereas in model B the nega-
tive energy components do not vanish even in this limit.
By virtue of these observations one can conclude that any
quark model should account for the correct treatment of
relativistic effects not only in the calculations of deeply
bound state masses (M � m1 +m2) but also in the case
of higher radial excitation states (M � m1 +m2). There-
fore the mass spectra calculations performed in the fully
relativistic Salpeter framework as presented in this paper,
may be more realistic than the numerous so-called “rela-
tivized” quark model calculations that do not incorporate
the negative energy components of the constituents in an
unrestricted manner.

A further feature of the fully relativistic Salpeter frame-
work affects the scalar sector: Using the UA(1)-breaking
instanton induced ’t Hooft interaction in order to com-
pute the pseudoscalar mass splittings, the fully relativis-
tic framework automatically generates flavour mixings
also in the scalar sector caused by the same interaction.
Therefore the present model allows to compute realistic
scalar q̄q states, in contrast to its nonrelativistic reduction,
where the ’t Hooft interaction acts for the pseudoscalar
mesons only. It turned out that the masses and flavour
mixings of the scalar mesons essentially depend on the
confinement Dirac structure: In model A the structure
1
2 (1I ⊗ 1I − γ0 ⊗ γ0) fixes the basic mass centroid of the
scalar ground-state nonet at roughly 1.3 GeV, which the
’t Hooft interaction then splits into an almost SU(3) sin-
glet at roughly 1 GeV and an almost SU(3) octet at about
1.4 GeV. In contrast, the UA(1)-invariant Dirac structure
1
2 (1I⊗1I−γ5⊗γ5−γµ⊗γµ) in model B produces the basic
mass centroid at about 1.0–1.1 GeV. Here the ’t Hooft in-
teraction lowers the dominantly flavour singlet f0-state to
roughly 700 MeV and pushes the dominantly flavour octet
f0-state to approximately 1.3 GeV. The lightest a0-state
appears at roughly 1 GeV and its decay properties are not
in contradiction with a q̄q interpretation of the a0(980).
The lightest scalar kaon appears roughly 200 MeV lower
than the corresponding experimental resonance in this sec-
tor. However, as the model presented here does not take
into account any effects of decay channel couplings on the
meson masses, we followed a suggestion of V. V. Aniso-
vich and coworkers, not to identify our calculations with
the observed resonance positions but with their K-matrix
poles (“bare states”) deduced from appropriate data sets.
This assignment then not only fits to the calculated mem-
bers of the scalar ground-state nonet but also to their
first radial excitation states in confinement model B. How-
ever, up to now such a K-matrix analysis has not been
performed for all quantum numbers. Therefore the “bare
states” are unknown in many meson sectors, such that
an overall comparison with our masses is not possible so

far. Moreover, from our point of view significantly differ-
ent mass shifts between ‘bare states’ and real resonances
would be unpleasant in many sectors due to the fact that
our model calculations agree well with the global structure
of the experimental mass spectrum. A K-matrix analysis
in all meson sectors would be very desirable to clarify this
matter.

We thank V. V. Anisovich, A. V. Sarantsev and E. Klempt for
helpful discussions and comments. This work was supported
by the Deutsche Forschungsgemeinschaft (DFG).

Appendix: nonrelativistic reduction of
model B
The action of the Dirac structure 1

2 (1I⊗1I−γ5⊗γ5−γµ⊗γµ)
on the Salpeter amplitude

Φ =
(
Φ+− Φ++

Φ−− Φ−+

)

can be written in the form

Γ Φ Γ =
1
2
(1I Φ 1I− γ5 Φ γ5 − γµ Φ γµ) =(
0 Φ++

Φ−− 0

)
− 1

2

(
Φ−+ Φ−−
Φ++ Φ+−

)

+
1
2

(−"σΦ−+"σ "σΦ−−"σ
"σΦ++"σ −"σΦ+−"σ

)
.

For a better understanding of the explicit spin depen-
dence, it is useful to rewrite the left-right multiplication
"σ ⊗ "σ into a spin projector multiplication from the left:

"σΦij"σ = (3 PS=0 − PS=1)Φij , i, j ∈ {+,−} , (22)

where PS=0 and PS=1 denote the projectors on spin
singlet (S = 0) and spin triplet (S = 1) states with
PS=0 + PS=1 = 1IS , where 1IS is the identity on the spin
space. The left-right multiplication "γ⊗"γ then can be writ-
ten as

"γ Φ "γ = (3 PS=0 − PS=1)
(−Φ−+ Φ−−
Φ++ −Φ+−

)

such that we end up with

ΓΦ Γ =
1
2
(1I⊗ 1I− γ5 ⊗ γ5 − γµ ⊗ γµ) =

PS=0

( −2 Φ−+ Φ++ + Φ−−
Φ−− + Φ++ −2 Φ+−

)

+PS=1

(
0 Φ++ − Φ−−

Φ−− − Φ++ 0

)
.

In the nonrelativistic reduction the components Φ+− and
Φ−+ vanish and for both spins the Salpeter equation can
be written as a system of two coupled 2×2 matrix equa-
tions:[H(Φ±± + Φ∓∓)

]
(p) = ±MΦ±±(p), for S = 0, (23)[H(Φ±± − Φ∓∓)

]
(p) = ±MΦ±±(p), for S = 1, (24)

where the operator H is defined as in eq. (16).
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